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Introduction: The Motivation

• Promises made at the Kernel Summit (2002):

– Slim Down The SCSI Layer

– Move Functionality to the Block Layer

– Residue should be small helper libraries for things

that are SCSI specific and not appropriate to be

moved up to block.
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Initial Efforts to Fulfil Promises

• Tag Command Queueing moved up to the block layer

– Unfortunately, very few drivers using it.

• Queueing being pulled out of drivers in favour of the

block layer queues.

• All separate queueing moved from the SCSI mid-layer.

• However, this has been a long, slow business: three

years later still not finished.

• The helper library died an almost instantaneous death.
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Some History of SCSI

• Subsystem used to undergo a complete rewrite for

every stable kernel version (2.0→2.2→2.4)

• Stopped this (in spite of tremendous external pressure)

for 2.6

• However instead began a program of gradual

modifications.

• Significant problem though is the number of users of

the SCSI layer

– 2.0 and 2.2 were essentially parallel SCSI only (still

shows in the error handler).

– 2.4 began to acquire things like USB and Fibre

Channel.
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Where SCSI is Officially Going

• SCSI is under the control of the T10 SCSI standards

Committee.

• SCSI-2 was a completely monolithic standard designed

for parallel SCSI.

• SCSI-3 was a complete rewrite in terms of an

architecture model that tries to get away from this.

– Central architecture model

– Device specific command models.

– Transport specific standards for feeding commands

and messages to devices.
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What about CAM?

• CAM (Common Access Model) designed to provide

uniform access to all SCSI devices

• Originally a T10 standard for SCSI-2.

• Attempt for SCSI-3 (CAM-2) was withdrawn.

• Adopted by BSD for the underpinning of its SCSI

devices

• Some agreement at the Miami Storage Conference

(2001) to adopt this for Linux too.

• So would this be a good idea?

– It does fit with the helper library idea

– but how well does it work out in practise?
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The Problems Begin

• CAM is a four layer model.

– The linux kernel is three.

• The Middle layers of CAM map to the Linux Mid layer

(and effectively the block layer).

– All the transport specific pieces of CAM are in this

middle layer.

– The transports are the most variable aspect of SCSI

and what cause the most difficulty from a block

point of view.
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The SAM Model
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SAM is better, but not Perfect

• It maps nicely to the current SCSI stack

• But, the transport is buried in the LLD.

– drivers do this already,

– but it’s wrong!

– Transport code should be held in common.
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Enter sysfs

• SCSI embraced sysfs early on (actually as a

consequence of embracing the device model).

• Placed struct device inside struct scsi device and

began exporting parameters.

• Now have 13+ parameters.

• Also expanded the model to allow drivers to add extra

parameters (both per device and per HBA).
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sysfs and classes

• For full details, see Greg Kroah-Hartman

• A class represents and interface to a device

• you can have many classes per single device (i.e.

anything that contains a struct device).

• each class can have parameters exported via sysfs
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What do these “Libraries” look like?

• The original idea was to have a library (like a function

call) that provided services to the card

• This is good for some things (like message display, or

performing a common function).

• However, lots of things (e.g. queue depth, bus speed)

that the user wants to influence

• This implies that we need mechanism for setting and

reading values.

• Best thing about a library is that it centralizes common

code, leading to a reduction in duplication (and in

number of bugs).
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Enter the SCSI Transport Class

• The helper library, married to a sysfs class becomes a

SCSI transport class.

• Now you have the library functions you’re looking for

with a uniform mechanism for getting and setting

values from user space.

• since sysfs is all files, the values can be simply

manipulated without any special tools at all.

• This is perfect: it means the SCSI API, as it interacts

with userspace, is now infinitely extensible.

• Parameters are exported per HBA, per target and per

LU.
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Anatomy of SCSI with Transport Classes
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Implementing SCSI Transport Classes

• Began life as simple two parameter exports for SCSI

and FC.

• First out of the gate with more complete functionality

was the SCSI Parallel Interface (SPI).

• Major annoyance is how to get and set bus speed

parameters (like u160 or u320).

– How fast is my SCSI bus is a major issue for a lot of

users

• On the kernel side, Domain Validation (DV) is a

requirement (theoretically) and every driver implements

its own.

• Putting DV in the transport class and switching the

Adaptec driver to use it saved 2,000 lines of code.
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The Fibre Channel Transport Class

• Developed primarily by Emulex

– Effectively as a condition for acceptance of their

lpfc driver.

• Began like the SPI transport class, exporting

parameters and simple services.

• ended up (through rports) altering fundamentally the

layout of the SCSI tree for fibre devices.

• This is good: it gives both flexibility and control in

code sharing.

• Qlogic estimates that switching to the FC transport

class reduced their driver by 30%
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If it’s Successful Use it Everywhere

• Originally the Transport Classes were extremely SCSI

specific

– As expected since they’re designed to minimize the

SCSI layer

– However, every consumer of the block layer could

be eligible to make use of this feature.

• Additionally, a single scsi device (target or host) could

only have one transport class.

• So look at abstracting this.
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Container Abstractions

• Begin by examining the real problem

– Each class device needs an entry in some overall

structure to which it belongs

– this limits the number of classes to be the number

of entries you have.

– This is intuitively obvious, but in the SCSI case, we

might not know this a priori.

• Need a way of hanging a class interface off a device

without allocating space in the structure for it.

• This became the generic attribute container.
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Generic Attribute Containers

• Introduce a wrapper (container) around a struct

class device

– Allocate one wrapper per classdevice

– So classdevice is now allocated when it comes into

use rather than having to be present already.

– Wrapper also contains back pointer to the attribute

container and a list head.

• attribute containers consist of the class, a pointer to a

set of attributes and a match callback to identify

devices you’re interested in.

• trigger points must be coded into the functions using

the container.
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Generic Transport Class

• Built directly on the attribute container.

• Really, identical, except instead of arbitrary triggers it

defines five:

1. setup: device created.

2. add: device made visible

3. configure: device ready to begin operating at full

capacity (cf scsi slave configure()).

4. remove: device made invisible.

5. destroy: last put called, free all resources.
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OK, so Where Are We Going?

• The generic transport class is effectively freed from

SCSI, so it should pick up several non-scsi uses

– SAS/SATA: these share a PHY interface, so we

could get a singly PHY class plus either a SAS or

SATA class.

– IDE (if they want).

– Hardware RAID

– ...

• However, doesn’t stop there.
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Other Transport Class Uses

• A transport class is essentially an interface.

• It could be regarded as a driver in its own right.

• It can attach to absolutely anything that has a generic

device.

• It has its own overrideable match function to determine

device attachment.

• Thus it could be used even in non transport cases

• Interesting one from this morning is PCI-E.
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What Should We Be Doing in SCSI?

• Most obvious component crying out for reform is Error

Handling.

• Single biggest complaint everyone still has with SCSI.

• Current error handler is still largely rooted in SCSI-2

(Parallel SCSI).

• Almost completely inappropriate to modern transports

• Thing most prone to error is the transport

• So move error handling into the transport classes.
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Error Handler in Transport Classes
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Conclusions

• Transport classes take us in the right direction

– Smaller drivers

– Common features in Common code

– hopefully less bug prone

• As an abstraction (driver backed interface code) they

may be far more generically useful around the kernel.
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