
Block Devices and Transport Classes:

Where are we Going?

James Bottomley

SteelEye Technology

21 July 2005

1



Introduction: The Motivation

• Promises made at the Kernel Summit (2002):

– Slim Down The SCSI Layer

– Move Functionality to the Block Layer

– Residue should be small helper libraries for things

that are SCSI specific and not appropriate to be

moved up to block.

2



Initial Efforts to Fulfil Promises

• Tag Command Queueing moved up to the block layer

– Unfortunately, very few drivers using it.

• Queueing being pulled out of drivers in favour of the

block layer queues.

• All separate queueing moved from the SCSI mid-layer.

• However, this has been a long, slow business: three

years later still not finished.

• The helper library died an almost instantaneous death.

3



Some History of SCSI

• Subsystem used to undergo a complete rewrite for

every stable kernel version (2.0→2.2→2.4)

• Stopped this (in spite of tremendous external pressure)

for 2.6

• However instead began a program of gradual

modifications.

• Significant problem though is the number of users of

the SCSI layer

– 2.0 and 2.2 were essentially parallel SCSI only (still

shows in the error handler).

– 2.4 began to acquire things like USB and Fibre

Channel.

4



Where SCSI is Officially Going

• SCSI is under the control of the T10 SCSI standards

Committee.

• SCSI-2 was a completely monolithic standard designed

for parallel SCSI.

• SCSI-3 was a complete rewrite in terms of an

architecture model that tries to get away from this.

– Central architecture model

– Device specific command models.

– Transport specific standards for feeding commands

and messages to devices.

5



What about CAM?

• CAM (Common Access Model) designed to provide

uniform access to all SCSI devices

• Originally a T10 standard for SCSI-2.

• Attempt for SCSI-3 (CAM-2) was withdrawn.

• Adopted by BSD for the underpinning of its SCSI

devices

• Some agreement at the Miami Storage Conference

(2001) to adopt this for Linux too.

• So would this be a good idea?

– It does fit with the helper library idea

– but how well does it work out in practise?

6



A View of CAM

SIM

Peripheral
Driver

Upper Layer
Driver (ULD)

Mid Layer

Low Layer
Driver (LLD)

User

Kernel

Linux

Tape Disk CD−ROM
Pass

Through

SIM

HBA

XPRT

CAM

Transport

Module
SCSI Interface

HBA Driver

HBA

7



The Problems Begin

• CAM is a four layer model.

– The linux kernel is three.

• The Middle layers of CAM map to the Linux Mid layer

(and effectively the block layer).

– All the transport specific pieces of CAM are in this

middle layer.

– The transports are the most variable aspect of SCSI

and what cause the most difficulty from a block

point of view.

8



The SAM Model

Device Type Specific Command Sets

Shared Command Set (for all Device Types)

SCSI Transport Protocols

Interconnects

A
rc

h
it

ec
tu

re
 M

o
d

el

LLD

Mid Layer

ULD

SAM−3 Linux

9



SAM is better, but not Perfect

• It maps nicely to the current SCSI stack

• But, the transport is buried in the LLD.

– drivers do this already,

– but it’s wrong!

– Transport code should be held in common.

10



Enter sysfs

• SCSI embraced sysfs early on (actually as a

consequence of embracing the device model).

• Placed struct device inside struct scsi device and

began exporting parameters.

• Now have 13+ parameters.

• Also expanded the model to allow drivers to add extra

parameters (both per device and per HBA).

11



sysfs and classes

• For full details, see Greg Kroah-Hartman

• A class represents and interface to a device

• you can have many classes per single device (i.e.

anything that contains a struct device).

• each class can have parameters exported via sysfs

12



What do these “Libraries” look like?

• The original idea was to have a library (like a function

call) that provided services to the card

• This is good for some things (like message display, or

performing a common function).

• However, lots of things (e.g. queue depth, bus speed)

that the user wants to influence

• This implies that we need mechanism for setting and

reading values.

• Best thing about a library is that it centralizes common

code, leading to a reduction in duplication (and in

number of bugs).

13



Enter the SCSI Transport Class

• The helper library, married to a sysfs class becomes a

SCSI transport class.

• Now you have the library functions you’re looking for

with a uniform mechanism for getting and setting

values from user space.

• since sysfs is all files, the values can be simply

manipulated without any special tools at all.

• This is perfect: it means the SCSI API, as it interacts

with userspace, is now infinitely extensible.

• Parameters are exported per HBA, per target and per

LU.

14



Anatomy of SCSI with Transport Classes

User

Kernel

sd

Mid Layer

Block

Application

Transport Class

sg

Block SG

st

Transport Class

LLD

LLD

15



Implementing SCSI Transport Classes

• Began life as simple two parameter exports for SCSI

and FC.

• First out of the gate with more complete functionality

was the SCSI Parallel Interface (SPI).

• Major annoyance is how to get and set bus speed

parameters (like u160 or u320).

– How fast is my SCSI bus is a major issue for a lot of

users

• On the kernel side, Domain Validation (DV) is a

requirement (theoretically) and every driver implements

its own.

• Putting DV in the transport class and switching the

Adaptec driver to use it saved 2,000 lines of code.

16



The Fibre Channel Transport Class

• Developed primarily by Emulex

– Effectively as a condition for acceptance of their

lpfc driver.

• Began like the SPI transport class, exporting

parameters and simple services.

• ended up (through rports) altering fundamentally the

layout of the SCSI tree for fibre devices.

• This is good: it gives both flexibility and control in

code sharing.

• Qlogic estimates that switching to the FC transport

class reduced their driver by 30%

17



If it’s Successful Use it Everywhere

• Originally the Transport Classes were extremely SCSI

specific

– As expected since they’re designed to minimize the

SCSI layer

– However, every consumer of the block layer could

be eligible to make use of this feature.

• Additionally, a single scsi device (target or host) could

only have one transport class.

• So look at abstracting this.

18



Container Abstractions

• Begin by examining the real problem

– Each class device needs an entry in some overall

structure to which it belongs

– this limits the number of classes to be the number

of entries you have.

– This is intuitively obvious, but in the SCSI case, we

might not know this a priori.

• Need a way of hanging a class interface off a device

without allocating space in the structure for it.

• This became the generic attribute container.

19



Generic Attribute Containers

• Introduce a wrapper (container) around a struct

class device

– Allocate one wrapper per classdevice

– So classdevice is now allocated when it comes into

use rather than having to be present already.

– Wrapper also contains back pointer to the attribute

container and a list head.

• attribute containers consist of the class, a pointer to a

set of attributes and a match callback to identify

devices you’re interested in.

• trigger points must be coded into the functions using

the container.

20



Generic Transport Class

• Built directly on the attribute container.

• Really, identical, except instead of arbitrary triggers it

defines five:

1. setup: device created.

2. add: device made visible

3. configure: device ready to begin operating at full

capacity (cf scsi slave configure()).

4. remove: device made invisible.

5. destroy: last put called, free all resources.

21



OK, so Where Are We Going?

• The generic transport class is effectively freed from

SCSI, so it should pick up several non-scsi uses

– SAS/SATA: these share a PHY interface, so we

could get a singly PHY class plus either a SAS or

SATA class.

– IDE (if they want).

– Hardware RAID

– ...

• However, doesn’t stop there.

22



Other Transport Class Uses

• A transport class is essentially an interface.

• It could be regarded as a driver in its own right.

• It can attach to absolutely anything that has a generic

device.

• It has its own overrideable match function to determine

device attachment.

• Thus it could be used even in non transport cases

• Interesting one from this morning is PCI-E.

23



What Should We Be Doing in SCSI?

• Most obvious component crying out for reform is Error

Handling.

• Single biggest complaint everyone still has with SCSI.

• Current error handler is still largely rooted in SCSI-2

(Parallel SCSI).

• Almost completely inappropriate to modern transports

• Thing most prone to error is the transport

• So move error handling into the transport classes.

24



Error Handler in Transport Classes

User

Kernel

Mid Layer

Block

Application

Transport Class

sg

Error Handler

Block SG

ULD

Transport Class

Error Handler

ULD

LLD

LLD

25



Conclusions

• Transport classes take us in the right direction

– Smaller drivers

– Common features in Common code

– hopefully less bug prone

• As an abstraction (driver backed interface code) they

may be far more generically useful around the kernel.

26


