
Integrating DMA Into the Generic Device

Model

James Bottomley

SteelEye Technology

26 July 2003

1



In the Beginning

• There was Programmed I/O (PIO).

• The processor coped with all the quirky device timings

and spoon fed the device a byte/word/quad at a time

at the correct rate.

• This was very, very slow.

• And wasted an awful lot of CPU cycles doing timings.

• But then if you have old IDE you already know this.

• Then came...DMA.

2



What Is DMA?

• Direct Memory Access (DMA) is simply the ability of

an I/O device to read or write memory directly without

the intervention of the Processor.

• Fundamentally, all devices that transfer reasonable

amounts of data need to use DMA.

• Because the processor isn’t required, it can perform

other tasks while the DMA is going on (well, as long as

the DMA doesn’t lock it off the memory bus).

• Principal problem is that the kernel thinks in terms of

“virtual” addresses and DMA must be performed to

“physical” addresses.

3



DMA Just Works, Doesn’t It?

• In 2.2 and early 2.4, DMA was controlled simply by two

APIs:

– virt to bus

– bus to virt

• and it just worked.

• Everyone was happy.

• in later 2.4 an entire new (and complex) DMA Mapping

API was introduced, necessitating the conversion of

every driver in the kernel.

4



What is Wrong With the Original Approach?

• The basic problems is that the simple approach really

only works on x86.

• Worse, it only really works on x86 up to 4GB of

memory.

• It only apparently worked for non-x86—a lot of work

went on under the covers to give this appearance.

• In 2.4, the decision was finally made to tackle this

properly, hence the DMA Mapping API.

5



What are the Critical Problems?

• Cache Coherency

– The coherency of the processor cache may need to

be managed by the driver (most non-x86

architectures).

• IO-MMUs

– The whole virtual memory problem occurs because

the CPU has a Memory Management Unit to do

address translation

– Can put one of these MMUs across the I/O bus (as

well as on the CPU)

– This means that I/O drivers now need to manage

the mappings for this IO-MMU.

6



Cache Layout

L2 Cache

Main Memory I/O Bus

L1 Cache

CPU

7



Cache Coherency Problems

• Any write From I/O to memory may change data that

is stored in one of the CPUs caches.

• If the CPU doesn’t watch for this and manage its

caches accordingly, it must explicitly be made aware of

the changes using cache management instructions.

– invalidate simply evicts a cache line from the CPU

cache.

– writeback causes the CPU to flush a dirty cache

line into memory

– writeback/invalidate

8



Cache Width

• The minimum number of bytes the CPU can read/write

from memory into the cache is called the “cache width”

• Sometimes the width is different for read/write (or

even for L1/L2 cache fills and evictions).

• However, the largest number is the one called the

cache width.

• To PCI people, this is also called the cache line size.

• This quantity is very CPU (and sometimes bus)

specific.

9



Cache Line Interference

Cache Line Width

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 dataDMA
data

DMA

0x00

0x20

0x10 data
data

new DMA
new DMA

0x00

0x20

0x10 DMA
data

new DMA

CPU Cache DMA

CPU Cache DMA new data

new data

new data

T
im

e L
in

e

CPU Writes data at 0x18

Device does DMA to main memory

CPU flushes the dirty cache line

10



Dealing with Cache Line Interference

• Simplest way to avoid this problem is always to follow

the rules:

1. Never, never, ever do DMA onto the stack

2. kmalloc() is aware of the cache line constraints and,

by and large, never allocates memory which violates

them.

3. Don’t mix DMA and non-DMA data in a structure

4. If you have to break rule 3 keep the DMA and

non-DMA areas separate (and make sure they’re

both cache line aligned).

11



Inducing Coherency

• On some Architectures, certain areas of memory can

be made Coherent.

• Most common IOMMUs can be made to participate in

the CPU coherency model, so requiring coherency may

sometimes be programmed into it per mapping.

• Even if it cannot, you may be able to fake it by turning

off the CPU’s cache per page (slower, but works).

• Some CPU’s have absolutely no way at all to induce

coherency.

• Note: For PCI people

– Coherent == Consistent

– Non Coherent == Streaming

12



IOMMUs

I/O BusMain Memory IOMMU

MMU

CPU

Memory Physical Addresses Bus Physical Addresses

CPU Virtual Addresses

• The IOMMU is a memory mapping unit sitting between

the I/O bus and physical memory.

13



IOMMUs Continued

• In order to begin a DMA transaction, the translations

between the Memory and Bus physical addresses mus

be programmed into the IOMMU.

• One useful feature of this is that any attempt to DMA

to memory ranges outside the programmed translation

can be caught (and even before it corrupts memory!)

• At the end of the DMA, the mappings must be

removed from the IOMMU (otherwise they’ll build up

until you run out of mappings)

14



GARTs

• These are Graphical Aperture Remapping Tables

• Originally designed to give video cards on the AGP bus

apparently large contiguous areas of physical memory.

• A GART acts like a simple IOMMU

– The Aperture may be fixed by the bios or variable

– It occupies usually a “window” in memory

– Any bus use of a physical address in this window

may be remapped into a different physical memory

location.

15



Memory Layout for a GART

I/O BusMain Memory

MMU

CPU
CPU Virtual Addresses

GART

Memory Physical Addresses

Address within the Graphical Aperture

16



The DMA Mask

• Every device has a specific range of physical memory it

can address

• This range may not correspond exactly to the amount

of memory available in the system (rendering some

memory non-addressable).

– Old ISA devices can only address up to the first

16MB of memory.

– Even some modern PCI devices may only be able to

address up to the first 4GB of physical memory.

• This range is encoded in a mask, called the DMA mask

17



Using the DMA Mask

• The DMA mask has two distinct uses depending on

whether an IOMMU is present in the system or not.

– For non-IOMMU systems, it represents the physical

maximum address that may be DMA’d to. Once

over this address, the data must be copied to/from

a lower address to perform DMA (this process is

called bouncing).

– If an IOMMU is present, the device may still DMA

to all of physical memory, and the DMA mask is

used by the IOMMU to determine what bus physical

addresses it should use for the device.

18



Bouncing

• Bouncing refers to the task of moving data from device

inaccessible memory to memory the device can DMA

to.

• It is only necessary in non-IOMMU systems.

• For block devices, the bouncing is done per page as the

bio is processed.

• The network layer has its own bouncing system too.

• And for good measure, IA-64 has an additional

bouncing system coded to look like a fake memory

management unit.

19



The PCI DMA API

• Introduced as an API to encapsulate the solution to all

of the coherency/IOMMU problems

• Has:

– Mapping and Unmapping API

– Cache Synchronisation API

– Coherent (Consistent) memory allocation API

• To emphasise the PCI nature, the API begins pci and

always takes a pointer to a struct pci device.

• Sparc also has a completely equivalent sbus API which

takes a struct sbus device.

20



The PCI DMA API Problems

• It only applies to PCI (and SBUS).

• We have many more bus types that need it (EISA,

GSC, MCA, USB, ...)

• Even if we introduced more <bus> variants, some

drivers don’t know the underlying bus type (or must

drive a large number of buses).

– Can correct this by making fake PCI devices for

these buses (callbacks are architecture specific)

– if you only need to use the IOMMU, NULL works as

the struct pci dev pointer.

• Doesn’t work at all for fully incoherent architectures.

• There are, actually, several problems with the API itself.

21



Illustration of a Bus Rich Architecture

CPU

U2/Uturn
IOMMU

Cujo

PCI64

Dino Wax Lasi

EISA LASIPCI32

IOMMU
U2/Uturn

Memory

GSC/10 GSC/8

Runway

22



Enter the Generic Device Model

• The generic device model requires that a struct device

be embedded in every bus specific device type.

• The entire bus tree may be built from the parent/child

relationships of the generic devices.

• This provides the ideal framework for building a generic

API which simply takes a pointer to the generic device

(and leaves any bus specific issues to the underlying

architecture)

• Approach greatly simplifies the job of driver writers

because the API is the same regardless of the bus.

23



Illustration—EISA

• EISA is an old bus type, but it is present in several

architectures (x86, Alpha, parisc).

• A difficult one, because neither NULL PCI device nor a

fake one provides the answer.

• However, once the EISA bus type was added (with

minimal architecture specific support) it just simply

worked.

• Well, OK, the drivers had to be converted as well.

• Good proof of concept.

24



Non-Coherent Architectures

• Problem is that pci alloc consistent can fail in two

ways:

1. Because you’re out of coherent memory, so you

should retry/abort the operation.

2. Because you’re on a non-coherent architecture (the

call can never succeed).

• Ideally, you’d like to treat consistent memory allocation

failure as always fatal and provide a special API to

drivers that know they may be used on non-coherent

platforms.

• Without having to do if(coherent) switches in the

driver

25



Other Extensions in the New DMA API

• In addition to the incoherent memory API (which is

dangerous), there are two other API additions which

are classified as extremely dangerous

• And I mean extremely dangerous

• Cache width API (dma get cache alignment()) allows

returns the correct cache width dynamically. (The

#define is usually the largest possible value for this)

• Partial sync API. This allows the partial synchronisation

of the memory area (instead of fully synchronising it)

• Again, you should never be using either of these unless

you really, really know what you’re doing.

26



Current Problems with Both APIs

• There are really three glaring issues with both the

generic device and the pci specific memory mapping

APIs:

1. The mapping APIs have no failure returns.

2. There’s no way to tell what an appropriate dma mask

for the system is

3. The cache coherency API isn’t as clearly usable and

implementable as it should be.

27



Mapping Failures

• Originally, in the IOMMU model, usually up to 4GB of

memory may be mapped at any one time, so you can

never run out of mappings, right?

• Wrong: in super High End machines, we’re already

getting into situations where 4GB of data may be in

flight at once

• GARTs may have really small apertures (around 128k)

• If you’re stuck with a GART as your IOMMU you are

almost always going to hit a failure even under normal

load.

• Adding error returns is now required.

28



Appropriate DMA mask sizing

• Even on a 64 bit machine, you may have < 4GB of

memory.

• Most adapters that can DMA directly into all 64 bits

have more than one “descriptor mode”

• e.g. aic79xx has three descriptor types, 64 bit, 39bit

and 32bit.

• Often, the I/O can go slightly faster if you use smaller

descriptors, so even on a 64bit machine, if it has less

than 4GB memory you want to use 32 bit descriptors.

• Therefore, need to expand the return of dma set mask

so that zero is error, but otherwise it returns the mask

required by the platform (often just the mask required

to reach available memory).

29



Cache Coherency API

• Current API has three hint flags: bidirectional, from

device and to device.

• However, when to use these in the driver requires

knowledge of how cache coherency works.

• An ownership model would have been much more

appropriate

• Now, The data is either owned by the CPU or owned

by the device (you still flag it with the same directions

to give cache hints).

30



Old Cache API

• dma map

• device writes to memory

• dma sync(DMA FROM DEVICE)

• CPU snoops data and asks for more

• device writes to memory

• dma unmap

31



Proposed New Cache API

• dma map — device owns the memory

• device writes to memory

• dma sync to cpu(DMA FROM DEVICE) — CPU owns the

memory

• CPU snoops data and asks for more

• dma sync to device(DMA FROM DEVICE) — device owns the

memory again

• device writes to memory

• dma unmap — CPU owns the memory again

32



Conclusions

• with the new API life is definitely much easier for some

architectures and buses.

• The new API definitely does not solve all the problems

• However, it does solve some of the corner cases of the

previous API.

• The API will still change to accommodate the three

listed issues.

33


