
Disaster Recovery

Where it stands on Linux

James Bottomley

SteelEye Technology

3 August 2004

1



What Is Disaster Recovery?

• Can mean a multitude of things.

• From the simple weekly backup and the transport of

tapes to an offsite storage place, to

• A fully automated instantaneous geographic takeover

from a live standby site when a disaster strikes the

primary site.

• Disaster Recovery is any system which allows recovery

of operation in the face of a systemic, site wide failure.

• This distinguishes it from High Availability which is the

recovery from individual points of failure within a site.

2



Distinction between Disaster Recovery and

High Availability

• High Availability is all about fast recovery from any

failure, however small.

– There’s little cost to doing a recovery in a HA

environment.

– recoveries are automated as far as is possible

• Disaster Recovery should be performed only if there’s a

real need

– Can take a long while, lose data, be expensive to

effect and have manual steps that can’t be

automated

– for this reason often require manual authorisation

that a Disaster really has occurred.

3



Distinction between Disaster Recovery and

High Availability Continued

• To generalise:

– High Availability is about protecting the applications

(the data being assumed to be safe).

– Disaster Recovery is about protecting the Data (the

applications being assumed to be recoverable later).

• Thus, all Disaster Recovery architectures are data

centric.

• With application recovery a secondary requirement.

4



Key Elements of Disaster Recovery

• The primary point is that some form of backup is

available, sufficiently far away so as not to be affected

by the disaster.

• Thus, making tapes and transporting them offsite

constitutes a disaster recovery solution.

• Making tapes and leaving them on-site does not.

• Recovery from the disaster may lose data.

– Again, this distinguishes it from High Availability,

where one of the key elements is no loss of

committed transactions.

5



Disaster Tolerance Criteria

• There are two key criteria for determining the nature of

a Disaster Recovery solution:

1. How much data are you willing to lose? and

2. How quickly do you need to become operational.

• If the answers to both these are measured in days, then

probably a simple offsite tape rotation backup is

sufficient for all your needs.

• If you need more stringent limits, then you probably

require the continuous live backups afforded by

replication.

6



The Paradox of Replication

Complexity

C
o

st

Simple Replication 

Shared Storage (SCSI, FC)

Disaster Recovery Replication

• Replication technologies

occupy both the low and

the high ends of the

market

• The low end is primarily

as a cheap alternative to

shared storage in HA

clusters.

• Concentrate on High

End. technology

7



Replication

Data Replication

NODE 1 NODE 2

Primary

Primary Replica

Replica

WAN Cloud

• This is a standard

replicating system

• two nodes joined by

some type of network

• The internal storage of

the nodes is replicated

by software across the

network.

8



Replication, Continued

Data Replication

NODE 1 NODE 2

Primary

Primary Replica

Replica

WAN Cloud

• Essentially, this is a

distributed RAID-1

(mirror) system

• RAID-1 is old hat

technology. The secret

for disaster recovery is

in other parts:

– Asynchronicity

– Logging

9



At What Level Should Replication Operate?

• Replicators can operate either at the Application level,

the file level or at the block level.

• Examples are:

– Application Level: MySQL data replicator

– File Level: snapshot backup file-system

– Block Level: Just about every replication

technology (drbd, md/nbd etc).

• Block Level replicators are far and away the most

popular because they don’t depend either on

application data formats or on file-system layouts (i.e.

they’re the most general).

• Format specific replicators can be better tuned.

10



Replication and Transaction Integrity

• All applications and file-systems commit data in

integral units called “transactions”.

• For the replication stream to respect transaction

boundaries (and thus the integrity of the data) it must

respect the ordering of the data in the stream.

• For a block replicator, this means the order of the

blocks as they come in must be strictly observed in the

order they’re committed to the replica device.

11



How Big a Network Pipe Do You Need?

• One of the essential prerequisites for establishing your

network requirements is knowing your data volume.

• There are two useful figures which characterise this:

– The Average Bandwidth: This is simply the total

data throughput averaged over a long time period

(like a week).

– The Sustained Peak: This takes the same time

period, but calculates the data rate on an hourly

basis. The sustained peak is the largest of these.

• The network bandwidth should lie between these two

figures.

12



Flavours of Replication

• Replication comes essentially in three flavours:

– Synchronous The simplest kind: Data is not

acknowledged as being committed until it is safely

on both the primary and secondary devices.

– Asynchronous Data may be acknowledged as

committed when it is safely on the primary, but may

be still in-flight to the secondary.

– Periodic This isn’t really a continuously replicating

system. The system is mostly operated on the

primary only. Periodically, the differences between

the primary and the secondary are sent to the

secondary to bring it up to date.

13



Asynchronous Replication

• The data that has been acknowledged as committed

(to the primary) but not yet sent to the secondary

must be cached within the primary.

• This cache is primarily used to smooth out bursts of

data that temporarily go over the available network

bandwidth.

• Once the asynchronous cache is full, the application

will be flow controlled (slowed down) to the actual

network speed. The replication becomes effectively

synchronous.

• Sizing the cache becomes important. Usually it should

be based on the difference between Network Bandwidth

and Sustained Peak.

14



Logging

• The primary purpose of logging is to protect the

integrity of the replication and to resume as fast as

possible after the problems are sorted out.

• The usual integrity problems are:

1. Prolonged network outages (where the

communications outage causes the mirror to break).

2. Non Disaster failures of the primary (where the data

is not transferred and the service is eventually

restarted on the primary).

• Logging records the data that needs to be sent to the

replica in order to bring the two volumes into sync.

15



Important Considerations in Log Placement

• The key problem with a transaction log is that it must

be written to at the same time as the local data

volume.

• Whenever dependent write activity like this is going on,

the basic rule of thumb is “separate spindles”.

• this means that the intent log should be on a separate

physical disc (or set of discs) from the data.

• The reason for this is head rattle: If two areas of the

disc are in use by I/O operations that depend on each

other, the disc head must move backward and forward

between them for each dependent operation.

16



Log Volatility

• The previous slide assumes a non-volatile log (i.e. the

Log is stored on a device)

• However, it is possible to store the log only in the

memory of the primary.

• Such a placement is called a volatile log.

• The key disadvantage is that the log is lost if anything

happens to the primary.

• Temporary crash of the primary, or any other transient

effect necessitating a reboot loses the log.

• Once the log is lost, the only way to get the primary

and replica back into agreement is a full

resynchronisation.

17



Transaction Logging

• A transaction log is basically a time ordered log of data

(and location).

• The time ordering is what preserves transaction

integrity.

• As soon as the data is safely in the transaction log, it

can be acknowledged as committed (asynchronous)

before it reaches either the primary or replica devices.

• Since the transaction log contains the data, any

required log replay preserves the integrity of the replica.

• The time ordered log may contain multiple copies of

the same sector, hence the log could grow larger than

the actual volume.

18



Transaction Logging II

• Transaction logs need to be large and may grow

without bound when communication is lost with the

replica.

• Usually, transaction logs have a fixed size area devoted

to them, so once they overflow, you cannot replay the

log and have no choice but to synchronise every block

on the disc.

• Can actually speed up the application by having the

transaction log on a fast (say SSD) device.

• However, always need some back end daemon clearing

the log and applying the data to both the primary and

the secondary.

19



Transaction Logging III

• this back end daemon works from the back of the log

while data is committed to the front causing head

rattle.

• Every piece of data goes once to the log and then

again to the primary device and the secondary. Thus

the I/O throughput of the system is degraded by the

additional writes.

• The transaction log is effectively the cache for

asynchronous writes referred to in a previous slide.

20



Intent Logging

• An intent log is simply a record of blocks that differ

between the primary and replica (the name comes from

Intention to Write log).

• since data is not recorded in the intent log, the

intention to write and the actual data must be

committed on the primary before the write can be

acknowledged (two I/O operations).

• The intent log can be a simple bitmap (one bit per

block), so it’s very small and a fixed size (can never

overflow).

• When the mirror is broken and restored, only the

changed data needs be transmitted, however many

times it has changed in the interim.

21



Intent Logging II

• However, during a replay from the intent log, data is

sent to the replica out of order, so the replica is

unusable until the replay is complete.

• Usually during normal application operation “hot spots”

develop. If the log clearing daemon is careful about

ageing sectors, most hot spots wind up having their bits

already set in the log. Thus no need to do a log write.

• For a prolonged outage, the amount of data transferred

for a resynchronisation is usually much less for an

intent log than for a transaction log.

• Intent logged systems require a separate cache for data

acknowledged but not yet committed to the replica.

22



Periodic Replication

• Like automated offsite backup.

• Requires logging to work efficiently

• Usually pick quiet times (e.g. at night) to ship changed

data from primary to replica.

• Best solution for narrow pipes if you calculate your

daily bandwidth will go over the requirements.

• Works best with intent logging (for multiple changes to

the same data only the latest change is transmitted).

23



Resynchronisation Tricks

• Obviously, a full Resynchronisation (especially over a

narrow bandwidth WAN) is one of the most expensive

operations on a mirror.

• However, two conditions often apply:

1. Data is blank (usually because the entire disc isn’t

full)

2. Data is the same on the primary and replica.

• Therefore can speed up resynchronisation by:

1. having a special signal that conveys an empty block.

2. before transmitting the block from primary to

replica, have the replica transmit the md5sum of its

block. If they match, high probability that they

contain the same data, so no need to resend it.

24



The Failback Scenario

• After a disaster has struck and operations have been

established at the replica site, the operation will

eventually need to be returned to the original primary

site when the disaster is alleviated

• Problem is that although you can record the changes

you made to the replica, you need to combine this with

the record of changes made to the primary to deduce

the full set of data needed for a resync.

• Using an intent log makes this easy: you simply or the

two intent logs together and the resulting log contains

the set of all data that needs to be replayed.

• Thus, with an intent log, you can dispense with the

requirement for a full replay on failback.

25



Hybrid Logs

• There are specific primary advantages and

disadvantages to each of the logging techniques:

Advantages Disadvantages

Intent Log small size,

never over-

flows

replica unus-

able during

replay

Transaction Log replica usable

but out of date

during replay

large size, may

overflow

• So the question arises, can you combine the

technologies somehow to get the best of both while

minimising the disadvantages?

26



Hybrid Logs II

• There exists a standard technique to combine the

advantages of the two logging techniques.

• Relies on transaction log being much larger than the

intent log.

• If transaction log overflows, or needs to be used for

failback it can be converted to an intent log in the

space the transaction log used to occupy.

• Conversion is simple and can be done while the mirror

is active.

27



Converting a Transaction to an Intent Log

• Procedure is:

1. create an in-memory image of the intent log,

initially all clean.

2. begin taking data out of the transaction log from

the beginning and mark it dirty in the in-memory

intent log

3. When you’ve pulled enough data to fit the intent

log, write the in-memory copy to the intent log,

make the mirror use it and replay the rest of the

transaction log through it.

• Obviously, can also convert back again while mirror is

operational.

28



Linux Replication Solutions

• Solutions exist both in Open Source and Closed Source.

• Both Open Source solutions are intent log based.

• Veritas rumoured to have SRL replication technology

available but not released on Linux which is transaction

log based.

• Replication technology is invasive to the operating

system, so principal disadvantage with closed source

solutions is getting timely kernels that match the

distributor;

• secondary problem is that full kernel replacement often

invalidates distribution vendor’s support agreements.

29



MD/NBD

• Work for 2.6 is being sponsored by SteelEye

Technology, Inc.

• Based on existing in-kernel md (Redundant Array) and

nbd (network block device).

• proposed solution involves adding a non-volatile intent

log and asynchronous capability to the existing in-kernel

md driver.

• patches to implement this capability are being reviewed

on the kernel mailing lists for inclusion into 2.6.

• Forms the basis of our LifeKeeper Disaster Recovery

Solution.

30



DRBD

• Project of Philippe Rensner, currently being worked on

by SUSE.

• Adds a completely new driver to the kernel

• system is a simple mirror with a volatile intent log and

asynchronous capability.

• Project is not currently on inclusion track for 2.6

31



Stretch Clusters

• This is a concept that receives much attention.

• Idea is to have a local cluster replicating to a remote

system.

Data Replication

NODE 2

Replica

NODE 1

Primary

Backup

WAN Cloud

32



Stretch Clusters II

• Local cluster protects against transient failures

(provides high availability)

• Remote replication provides backup in case true

disaster strikes (bringing down local cluster completely)

• Perfectly feasible with current technology provided the

log is non-volatile.

33



Conclusions

• Disaster Recovery using Replication is a viable solution

today.

• It can be implemented today using completely open

sourced components.

• Subtleties in the implementation often leads to service

oriented offerings to assist implementing organisations.

• For all around protection, use the stretch cluster

concept.

34


