
The Economic Benefits of making

Open Source Contributions to the

Linux Kernel

James Bottomley

SteelEye Technology

6 April 2006

1

Introduction

• The Linux Kernel is becoming an increasingly complex

place

– The number of “core subsystem” maintainers is

growing

– The number of supported features is growing

– The rate of change of code is also (currently)

growing

• Often difficult to understand what you’re changing.

• Even more difficult to work out what the correct way

to change it is.

• However, the kernel has a basic need for talented and

motivated contributors

2

Agenda

1. Why you should contribute code to the Kernel (and

why your Employer should pay you to do it).

2. Why the Kernel needs you to contribute.

3. Why it isn’t as simple as it sounds

4. Case Study: how SteelEye got replication for Disaster

Recovery into 2.6.14

3

Why Contribute

• Direct contributions:

– There’s a bug and it’s affecting you personally

– There’s a bug and its affecting your employer

– You (or your employer) has a new feature/driver

• Indirect contributions

– You have an area in the kernel that you want to

work on.

– You want your employer to sponsor your work on it.

4

Alternatives (and misconceptions)

• My Product only supports RedHat, SUSE etc. Linux

Distributions, so I only need to patch their distribution.

• Distributions are commercially motivated so they’re

much easier to deal with than Linux Kernel Developers.

• The Distributions are a direct channel to the users, so

they’re the obvious place to start.

• I can just patch the kernel and ship it myself.

5

Upstream First Policy

• Major distributions have agreed not to incorporate

features or drivers unless they are on “upstream track”

for the vanilla Linux Kernel

– Obviously there’s some flexibility in interpretation of

this for their best customers

• Primary reason is that it keeps the distribution kernel

code and the vanilla kernel code as close as possible, so

– Maintenance is reduced: the distro can file a bug

with the upstream maintainer if there’s a problem.

– Testing is enhanced: users of all distributions are

testing the same code

– Code Review burden is greatly reduced: Can rely on

upstream maintainers to review and accept.

6

What is “Upstream Track”?

• In the vanilla Kernel (Linus Tree)

• In Andrew Morton’s -mm tree

– With the proviso that Andrew has accepted it for

onward transmission to Linus.

– Not everything in -mm is designated for onward

transmission.

• In a Subsystem Maintainer Tree.

– Again, it must be designated for onward

transmission.

– Policy on this varies from subsystem to subsystem

• Interpretation within gift of Distribution

7

The Bottom Line

• You must either

– Get your code accepted into the Vanilla Kernel

∗ Either directly to Linus (very hard nowadays)

∗ Or via Andrew Morton or one of the Subsystem

Maintainers.

– Or, distribute it yourself

∗ Will expand more in case study.

∗ Summary: If you need a new kernel, don’t bother;

If you can just ship a module, may be feasible.

8

Why the Kernel Needs you to Contribute

• The Linux Kernel Code base is incredibly complex.

• No-one understands it all fully

• It maintains its forward momentum and “buzz” because

of innovative advances contributed by individuals.

• The more experts the kernel has contributing and

assessing the contributions of others, the better it

becomes.

• Maintaining the flow of innovation requires a constant

stream of fresh talent.

9

Contributing To The Kernel

• Know where to start

– Look in the MAINTAINERS file

– Find your driver, or subsystem and see if it has a

mailing list.

– if it doesn’t, you have to begin on the Linux kernel

mailing list

∗ linux-kernel@vger.kernel.org

∗ very high volume

∗ Slightly lower signal to noise ratio.

• Begin by reading the mailing list not by coding.

– Get a sense of where the code is going and what

might be acceptable.

– Read previous acceptances and rejections.

10

Your First Contribution

• First, make sure you’ve lurked on the email list for a

while to get the feel of the subsystem and the patches.

• Then, your initial patch should be small, just to get the

feel of the process

– Find a tiny bug or misfeature and fix it.

– Will give others confidence in trusting you.

– Will get you used to the patch submission process

• If all goes well, and you think you understand how the

subsystem is working, then you can begin your big

driver/feature.

11

Rules for Coding your Feature/Driver

• Release Early, release often

– Your first patch, doesn’t even need to be a patch,

just a “this is how I’m thinking of coding this”

email.

– Makes sure you’re going in the right direction

– Gets feedback (and buy in) from others in the

development

– Allows any corrections to be made easily (before

you’ve coded another 10,000 lines of code

dependent on the piece that the maintainer wants

changed)

12

Accepting Feedback

• Pay attention to feedback on your code

– Even if you know your own driver/feature, others

probably know the kernel better.

– Even in your own code, another pair of eyes may

spot a bug you missed.

• Some feedback is more valuable that others

– Every mailing list has its share of armchair coders.

– If you studied the list first, you should have a pretty

good idea who they are.

– Can also tell by what type of reply from others the

feedback elicits.

13

Why Contributions Usually Fail

• One of the most classic is Coding Style

– Read the kernel coding style document

Documentation/CodingStyle and follow it.

– Not conforming really does matter, because it

makes your contribution harder to follow and more

difficult to maintain.

– This really, really does matter, so people will be

anal about it.

– Redoing the style is fairly easy and, hey, if that’s all

they complain about, they must have liked the code

...

14

Design Issues

• Code that fails for a basic design reason is the hardest

to correct

– Usually requires a fairly thorough rewrite

• Design problems can be picked up early on, so releasing

early can avoid this.

• Just because you wrote a driver this way on 15 other

platforms doesn’t mean that Linux will automatically

accept it.

• Design issues are hard to foresee and are usually within

the gift of the Maintainer to adjudicate.

15

Glue Layers

• A “Glue Layer” is a layer that sits between your

driver/feature and the Linux Kernel.

• Usually, the reason for it existing is so that the

driver/feature can be common across several platforms.

• Don’t do it!

• Glue layers may be nice for you to maintain, but they’re

a nightmare for anyone else after you move on to

different projects.

16

Case Study: SteelEye Data Replication

• Had some experience of Linux Kernel work

– Mostly in fixes to Linux 2.2. for Shared SCSI

• in 2001 Decided we needed Replication in Linux

(already had it as proprietary kernel extensions for

Windows and MP-RAS (SVR4MP).

• Immediate temptation was just to do another binary

driver for Linux.

• However, with a bit of persuasion, we decided to try

open source development methods.

17

The Persuasion

• All prior projects (Windows, UNIX) took over two

person years to develop and bring to market kernel

based replication.

• Linux, being sufficiently different would require a

completely new (as in write from scratch) driver.

• We had two resources to assign to the project, one full

time and one half time, so that would give us an end

date about sixteen months.

• However, using pre-existing open source components

(md and nbd) we produced a project plan predicting GA

in 8 months (i.e. half the time)

18

The Concerns

• Won’t the GPL contaminate our entire Product?

– This was simple: as long as we open source all our

kernel components, we’re clear to keep our own user

level components that make use of the kernel

proprietary.

• We’re a product company, how can we make money

from something we’ll give away for free?

– Solved by separating the problem as above.

– Key is that the proprietary user components contain

sufficient value to protect our investment.

19

The Value Proposition

• For an engineering shop, engineer time is our most

precious asset.

• Using Open Source components saved us 50% in terms

of engineer time

• In cash terms, this probably equals about $150k in

engineer costs plus increased Opportunity costs

– Opportunity is the amount of money the product

made in the additional 8 months it had on the

market

– Conservatively this is estimated at another $150k

20

Other Lessons Learned

• Fixing md and nbd was daunting.

• Delivering the fixes in a timely fashion was painful

– The distributions and even the kernel cycle is too

long for our release

– Thus, had to ship our own modules

– md is non-modular in every distribution, so changes

to it have to be delivered by complete kernel

replacement.

– Fortunately, most of the bugs were in nbd

21

Replacing Distribution Kernels

• Have to generate the kernel in its entirety and package

it

• Kernel is often the most complex and difficult

distribution package to build.

• It is also the fastest turning one ... almost every

update includes a new kernel.

• Distributions often forbid kernel replacement (it voids

the support agreement).

• In general, kernel replacement has too many drawbacks

to be viable in the marketplace.

22

Delivering Individual Modules

• Much easier ... doesn’t void the support agreement (if

you’re careful).

• SteelEye does this with nbd.o and nfsd.o for 2.4

• Even this is hard. Currently have 150 separate kernel

build directories on our build machines for all the

distributions we support.

• Even for modules, this is rapidly becoming untenable

• Great incentive to get all our patches upstream for 2.6

23

Working With Distributions

• As Linux becomes more mainstream, this becomes

harder

– As the revenues grow and the money stakes become

higher, distributions become less likely to listen to

smaller companies.

• Upstream first policy means the patches must be

upstream anyway before a distribution will pick them

up.

• Therefore, simplest just to work in upstream knowing

that distributions will be forced to incorporate them

(eventually).

24

Conclusions

• Submitting patches is different from any other

industrial process you’ll have been through before

• The trick is to understand the constituency you’re

trying to convince to accept your patches.

– i.e. study the mailing list

• Release early and release often.

• Leveraging existing open source components can

dramatically shorten project cycles and time to market

– Providing you’re willing to open source your feature.

• Working in the Vanilla kernel is the simplest method for

distribution of your feature.

25

