Git, Quilt and other Kernel Maintenance
Tools

James Bottomley

SteelEye Technology

4 September 2007




Introduction

e Talk based on “unconference’” presentation at
FreedomHEC in Los Angeles

e Will mainly cover git (quilt is very simple)

e Git is huge, so will not cover all of git, so ask if you
want to know something




Brief History of Git

e Source control began in Linux as the need to manage
patch inputs efficiently

Before, Linus revewed every patch

After, only subsystem maintainers review patches
that go via subsystem trees

—=> scaling.

e After SCO it continued as the need to track
contributions

e Initial tool for this was Bitkeeper.




Bitkeeper

Fully distributed nicely scaleable non master based
source tree management system

Initial use for Linux was early in 2002

Final rupture was in 2005

Bitkeeper worked extremely well for those three years in
spite of the complaints about its being proprietary.




Developer Certificate of Origin

Introduced in response to SCO suite
Forced by need to know origins of patch added to kernel

Signed-off-by means I know where the patch came
from (at least as far back as the previous signoff)

Acked-by means something different.




Origins of Git

2.6.12-rc2 was the last Bitkeeper release.

After that, a large slew of kernel developers began
developing git.

Concepts were based on distributed source control
learned from Bitkeeper

But were corrected for perceived mistakes Bitkeeper
made.




Basic Concepts

e Git is a tree tracking tool, not a change tracking tool.

e Fundamental objects in Git are trees joined by commits.

Head




T he problems begin

If Trees are the object, there are many files that remain
the same between commits

This would involve horrible duplication (multiple copies
of the same file)

Solution is to make git Content Accessible

Every object is named and indexed by its content (shal
hash)




Tracking trees and Content

Renames now easy ... tree name changes but shal
remains the same

However, lack of change information between commits
makes it very hard to track renames, adds and deletes.

Easy if file contents don’'t change, but if they do can
only do probability analysis to establish the rename.

Fundamental principle of git: Making things happen is
very easy,; Finding what changed it much harder

— (Classic example is which commits touched this file.




Heads in Git

Any given commit has one (or more) parents

This forms a tree.
The root commit is the only one that has no parent

However, your current work is usually at the head of
the tree.

S0, need pointer to the current working head of the
tree

refs/heads is where this is stored

The head is automatically advanced as commits are
made




Branches in Git

Very simple.
Every commit is a potential branch
Git keeps track of branches via tree heads

Git also keeps an idea of the curent working branch
(what's checked out)

Because git is content accessible, could store every git
tree for every project in the same repository

— As long as you remember where the heads are




Merging

Since git has no special weave based file formats
or any requirement to track changes at all

Merging occurs simply when a commit has more than
one parent

There's no prescription of the merging algorithm at all

At the moment, git uses a pluggable set for finding the
best merge




Git Commands

rebase
cherry—pick
cherry

apply add

M mv revert
format—patch

applymbox

Branch

Checkout
init .
commit

Blame
bisect




Much simpler
IS basically a code base and a series of patches

iSs designed to apply and remove these patches

no concept of immutable history (history is the series
file, which can be changed easily)




