
Hacking the Linux Kernel for Fun and

Profit

James Bottomley

Hansen Partnership, Inc.

5 April 2008

1

Introduction

• The Linux Kernel is becoming an increasingly complex

place

– The number of “core subsystem” maintainers is

growing

– The number of supported features is growing

– The rate of change of code is also (currently)

growing

• Often difficult to understand what you’re changing.

• Even more difficult to work out what the correct way

to change it is.

• However, the kernel has a basic need for talented and

motivated contributors

2

Agenda

1. OK, I understand the Fun Part, where’s the Profit?

2. Why you should contribute code to the Kernel (and

why your Employer should pay you to do it).

3. Why the Kernel needs you to contribute.

4. Why it isn’t as simple as it sounds

5. Where to go to get help

3

Where’s the Money

1. Current total investment in Linux up to 2008: $2BN

2. Annual Income derived from Linux in 2007: $2BN

3. So, there’s a lot of money floating around.

4. The problem is, not much of it goes directly to kernel

developers.

5. Open Source is about Code not Business Models

6. However Good Business models make money off Open

Source

7. Moral: If you want to get really rich, start a company.

4

Indirect Economic Benefits

• Most open source projects hire the top contributors in

their area.

• Even if that’s not you, a large number of recruiters use

open source mailing lists as a tool.

• Everything you do in open source is on show and easily

searchable

– Recruiters know this.

– it is also archived forever...

5

Other Reasons to Contribute

• Direct contributions:

– There’s a bug or missing feature and it’s affecting

you personally

– There’s a bug or missing feature and it’s affecting

your employer

– You (or your employer) has a new feature/driver

• Indirect contributions

– You have an area in the kernel that you want to

work on.

– You want your employer to sponsor your work on it.

6

Alternatives (and misconceptions)

• My Product only supports RedHat, SUSE etc. Linux

Distributions, so I only need to patch their distribution.

• Distributions are commercially motivated so they’re

much easier to deal with than Linux Kernel Developers.

• The Distributions are a direct channel to the users, so

they’re the obvious place to start.

• I can just patch the kernel and ship it myself.

7

Upstream First Policy

• Major distributions have agreed not to incorporate

features or drivers unless they are on “upstream track”

for the vanilla Linux Kernel

– Obviously there’s some flexibility in interpretation of

this for their best customers

• Primary reason is that it keeps the distribution kernel

code and the vanilla kernel code as close as possible, so

– Maintenance is reduced: the distro can file a bug

with the upstream maintainer if there’s a problem.

– Testing is enhanced: users of all distributions are

testing the same code

– Code Review burden is greatly reduced: Can rely on

upstream maintainers to review and accept.

8

What is “Upstream Track”?

• In the vanilla Kernel (Linus Tree)

• In Andrew Morton’s -mm tree or linux-next

– With the proviso that Andrew has accepted it for

onward transmission to Linus.

– Not everything in -mm is designated for onward

transmission.

• In a Subsystem Maintainer Tree.

– Again, it must be designated for onward

transmission.

– Policy on this varies from subsystem to subsystem

• Interpretation within gift of Distribution

9

Why the Kernel Needs you to Contribute

• The Linux Kernel Code base is incredibly complex.

• No-one understands it all fully

• It maintains its forward momentum and “buzz” because

of innovative advances contributed by individuals.

• The more experts the kernel has contributing and

assessing the contributions of others, the better it

becomes.

• Maintaining the flow of innovation requires a constant

stream of fresh talent.

10

Contributing To The Kernel

• Know where to start

– Look in the MAINTAINERS file

– Find your driver, or subsystem and see if it has a

mailing list.

– if it doesn’t, you have to begin on the Linux kernel

mailing list

∗ linux-kernel@vger.kernel.org

∗ very high volume

∗ Slightly lower signal to noise ratio.

• Begin by reading the mailing list not by coding.

– Get a sense of where the code is going and what

might be acceptable.

– Read previous acceptances and rejections.

11

Your First Contribution

• First, make sure you’ve lurked on the email list for a

while to get the feel of the subsystem and the patches.

• Then, your initial patch should be small, just to get the

feel of the process

– Find a tiny bug or misfeature and fix it.

– Will give others confidence in trusting you.

– Will get you used to the patch submission process

• If all goes well, and you think you understand how the

subsystem is working, then you can begin your big

driver/feature.

12

Rules for Coding your Feature/Driver

• Release Early, release often

– Your first patch, doesn’t even need to be a patch,

just a “this is how I’m thinking of coding this”

email.

– Makes sure you’re going in the right direction

– Gets feedback (and buy in) from others in the

development

– Allows any corrections to be made easily (before

you’ve coded another 10,000 lines of code

dependent on the piece that the maintainer wants

changed)

13

Accepting Feedback

• Pay attention to feedback on your code

– Even if you know your own driver/feature, others

probably know the kernel better.

– Even in your own code, another pair of eyes may

spot a bug you missed.

• Some feedback is more valuable that others

– Every mailing list has its share of armchair coders.

– If you studied the list first, you should have a pretty

good idea who they are.

– Can also tell by what type of reply from others the

feedback elicits.

14

Section Mismatches

Unless they break the build, or if there currently are

0 and they make it non-zero, people seem not to

care....sad. Probably the same for sparse/checkpatch,

"there’s plenty already, I can’t be bothered to look"

15

Re: Section Mismatches

> Unless they break the build, or if there currently are

> 0 and they make it non-zero, people seem not to

> care....sad. Probably the same for sparse/checkpatch,

> "there’s plenty already, I can’t be bothered to look"

checkpatch does not parse C, it uses heuristical regexes.

That makes it very different from sparse or the section

mismatch finder which do not output false positives.

16

Re: Re: Section Mismatches

> > Unless they break the build, or if there currently are

> > 0 and they make it non-zero, people seem not to

> > care....sad. Probably the same for sparse/checkpatch,

> > "there’s plenty already, I can’t be bothered to look"

> checkpatch does not parse C, it uses heuristical regexes.

>

> That makes it very different from sparse or the section

> mismatch finder which do not output false positives.

Even by the exalted standards of LKML which sometimes

seems to make a virtue of misinformation, four wrong

statements in twenty seven words is pretty impressive

... I salute you!

17

Why Contributions Usually Fail

• One of the most classic is Coding Style

– Read the kernel coding style document

Documentation/CodingStyle and follow it.

– Not conforming really does matter, because it

makes your contribution harder to follow and more

difficult to maintain.

– This really, really does matter, so people will be

anal about it.

– Redoing the style is fairly easy and, hey, if that’s all

they complain about, they must have liked the code

...

18

A success story: the initio fiasco

• 21 May 2007: Alan Cox redoes the entirety of the initio

driver

– he does get a tester to make sure it works

• Over the months, several interfaces have been changed

and updated

• 17 Dec 2007 A user posts a bug report saying basically

that the initio driver no longer works in recent kernels

• Oops.

• Long discussion on mailing list

– Alan’s tester isn’t there anymore

– No-one really knows what’s wrong with the driver

19

From: Stuart Swales <stuart.swales@croftnuisk.co.uk>

To: linux-scsi@vger.kernel.org

Subject: [PATCH 2.6.24-rc8-git6] initio module hangs on

loading fix set

Date: Wed, 23 Jan 2008 20:00:48 +0000 (14:00 CST)

I’ve verified (on my Initio 9100 with a DAT drive) that

the 2.6.24-rc8-git6 initio module still hangs on loading.

These fixes (other than the printk) are needed to get the

module to load ok (and work correctly) with my adapter &

tape drive.

20

Where to Contribute

• Kernel is divided into “Subsystems”

• 50% of the kernel code is in drivers/

– That’s over four million lines

– 90% of the kernel bugs are in drivers

– Especially drivers/scsi

• Rest is architectures (arch/) core kernel (kernel/)

Memory Management (mm/) Filesystems (fs/) and

networking (net/)

• Oh, and Documentation/

21

What is The Kernel API?

• Simple answer: “There isn’t one”

• More complex one is that there is, it just isn’t stable

• Good reason for not stabilising it

– Allows faster innovation

– A changing API lets us correct it when we get it

wrong

• Several books you can read, but best source is the

kernel itself

• If you don’t like what you find, think about

documenting it better ...

22

Getting The Code

• On any distribution install git

• apt-get install git

• yum install git

• ...

• Download the Kernel

• git clone git://git.kernel.org/pub/scm/linux/kernel/

git/torvalds/linux-2.6.git

23

Mailing Lists

• linux-kernel@vger.kernel.org

• linux-fsdevel@vger.kernel.org

• linux-scsi@vger.kernel.org

• ...

• Vger is a Majordomo system. To get a full set, just

send a message with ‘help’ in the body to

majordomo@vger.kernel.org to get started.

24

Websites

• www.kernelnewbies.org — best place to get started;

packed with information

• www.kernel.org — repository of most actual kernel

code; more expertise required in the interface

• marc.info — archive of all linux related mailing lists

(and quite a few others).

25

Conclusions

• Submitting patches is different from any other

industrial process you’ll have been through before

• The trick is to understand the constituency you’re

trying to convince to accept your patches.

– i.e. study the mailing list

• Release early and release often.

• The Kernel API is huge; pick a small part of it to begin

with.

26

