Clusters and High Availability

James Bottomley
SteelEye Technology

Introduction to High Availability using commodity
hardware clusters

Types of Cluster

MPP - Compute clusters (Beowulf)
FT - Full Fault Tolerance (Isis, Stratus)

- Recovery undetectable, no transaction loss
HA - High Availability (LifeKeeper, Linuxha)

— Detectable recovery (seconds). Uncommitted
transactions may be lost

DR - Disaster Recovery
- Committed transactions may be lost
LB - Load Balancing

Performance

Availability Chart

e Performance Clusters
cannot tolerate
Performance Clusters | instantaneous failure

@ (Beowulf)

) HA can provie availability

HA with failure with virtually
no performance
degradation

e T sacrifice performance
Fault Tolerant @ for avaliability

Availability

Fault Tolerance

| Multiple application
@ copies.

- Harness splits input
and monitors output.

|
|
|
[Cluster Harness ‘ ° If >2 COpieS, may
* // X\x identify failing
T output.
AP AR | * Applications must

Node1 Node2 use deterministic
transactions.

High Availability

e Single copy of the

application.
s Recover only when
AP App fault detected.
Node1 | Node2 » Recovery time
\ | depends on
| [Cluster Harness} applicatiOn and
|
|

\ resources.

Cluster |
777777777

Failure Modes

e Local

— Application fails but cluster node still operates.

— May recover application locally or on a different
node.

- Recovery Mediated by node where failure
OCCUrs.

 Global

— Entire node fails (or hangs).
- Recovery mediated by cluster.

Failure Detection

* | ocal: Must have customised watcher that
monitors the services the application
provides (simply checking the process isn‘t
enough)

 Global: Every node watches every other via
multiple distinct communication paths.
When all paths fail, the node at the other end
IS assumed to be dead.

 Must prevent spurious Global failure
detection caused by comm path failure.

Pathological Failures
 These are failure modes induced by the
setup:

- Single Points of Failure (SPOFs) outside the
control of the cluster harness.

— Total or partial failure of the cluster
communication paths causing one or more
nodes to appear dead.

— Complete or partial system hang.

 Eliminate SPOFs by careful hardware design
provisioning and deployment.

e Cluster software must prevent inappropriate
response to comm path failures.

Pathological Application Failures

« HA moves
protection into app

Operating System

by monitoring

Application

Protected

o
N

Protection Boundary

A
Unprotected

 |[f app failure due to
« data input, no

amount of restarts
will fix the problem

 Fortunately, most
apps well behaved.

Recovery Requirements

e Application itself must be capable of
recovering from a crash.

e All resources that may be used by the
application (open files, database
connections, IP addresses etc.) must be
available.

 [f all resources are available, the application
may be recovered on a different node.

 Applications are resource aware not location

aware.

Performing Recovery

 |[f the Recovery Requirements are satisfied,
most of the work is done by the application

 The HA software only has to provide the
resources and then start up the application.

e Clients of the application see an interruption
iIn service while all this is going on.

 The level of interruption depends on how the
application is coded to handle crashes.

Providing IP resources

 Moving an |IP address from one machine to
another is easy (use Ip aliases).

 Getting other machines to see the switch is
harder because of ARP caching.

- Any machine on the network may respond to an
ARP request if the mapping is in its cache.

— Gratuitous ARP (GARP) is one method of forcing
the switch to be seen (used by linux-ha).

— ARP cache flushing is another (used by
LifeKeeper).

Providing Storage Resources

 Need either physical access to the storage
from all nodes in the cluster (shared SCSI,
SAN etc.) - Expensive

e or replicated copies - Cheap but a network
bandwidth hog (also less reliable).

 Pathological failure modes can produce data
corruption unless you have I/O Fencing.

- STONITH devices
- Watchdog timers
— SCSI Reservations (Shared storage only)

Replication

e For HA, replication must be synchronous

- Block only acknowledged as committed when it
reaches the storage on both primary and
secondary.

— Adversely affects latency.

e [f connection breaks, must resynchronise
entire volume! Mitigate with:

- Transaction Log (unbound but doesn‘t corrupt
secondary on replay).

- Intent Log (known size but corrupts secondary
during log replay).

Shared Storage

 External RAID array
expensive

 Eliminating Single
Points of Failure
Storage (dual |00p) even

W Interconnect W more COStIy
* However, often a

m choice for large

— dataset (enterprise)
environments.

SANS

o Storage Area Networks

- Fibre Channel Based
- Essentially bigger and better shared SCSI.

« SAN Problems inherent in Linux but impact
Clusters:

- Lack of decent device identification and
management infrastructure (but see LVM, EVM)

- Lack of large number of device support
(possibly change in 2.5).

- Need a useful device node naming scheme.

Shared Host Based Raid

— Storage
‘ | Interconnect

 Raid Controller is
Inside each node

— e Slightly Cheaper
: Alternative to
Shared Storage

e RAID cards must be

cluster aware

* |/O fencing
problems even more
acute (destroy RAID)

QD0 __|HH

STONITH

e Shoot The Other Node In The Head.

 Implemented as a serial line controlled
power supply for the whole cluster.

— Obviously a SPOF.

e When Node A detects failure on Node B it
turns off Node B‘s power.

— Active protection.
- Races mediated by Stonith device.

— No more effective than an additional comm path
for pathological comm path failure.

Watchdog Timers

 Must be prodded by system periodically or
they power off the machine

 Primarily cure |I/O fencing problems caused
by system hangs.

* Do not cure problems caused by
pathological comm path failure

- Can mitigate this by making the storage access
a communication path (disc based mailbox).

SCSI| Reservations

 Most reliable: Access mediated by the
device itself.

o Unfortunately, not supported by all devices

- and even supporting devices may have quirky
iImplementations.

 Not implemented in the vanilla Linux Kernel

- Most OS distributions (RedHat, SUSE etc.) have
support in their kernels.

 Reservations may be used to arbitrate a total
comm path failure situation.

Recovery By Hierarchy

 Applications may
Web Sewer depend on other

Applications and
‘ i Jesourees
IP Address Database
 Must perform an
e
e Hierarchical

ordered recovery
divisions also make
monitoring easier

HA versus Disaster Recovery

e Difference is in committed transactions:

- HA must not lose committed transactions

— Disaster Recovery (DR) may lose a pre-specified
number of committed transactions.

e Very difficult to automate DR unless you are
sure you need take no corrective action for
the lost transactions.

- Bank‘s cash machine transaction? Probably not

— Non revenue record update? Possibly

What is a Transaction?

Almost any action for which you have an
agreement followed by an action.

- e.g. Buing an item is a three stage transaction:
Agree on price, pay price, take item.

 In computer terms, a transaction is defined
as an abstraction of an atomic and reliable
execution sequence.

* /[dempotent transactions are ones which
may be repeated without affecting anything.

Disaster Recovery Criteria

DR protection done by geographically
dispersed data replication

— Large distances make lowering latency almost
unviably expensive for synchronous replication

— Must replicate asynchronously to avoid latency
but must preserve data ordering so replica is
always an Out Of Date copy of Primary.

- Limit transaction loss by limiting the amount of
sent but unacknowledged data blocks between
the primary and the secondary.

- Tuning this "window” allows a Bandwidth for
Latency swap.

Transmission Interruption

e [f transmission is interrupted, mirror breaks.

— When transmission restored, must avoid
resending the entire primary data set.

* Do this by keeping a log of Sent but
Uncommitted transactions.

— Only need to replay this log to bring replica into
sync with primary

 Two types of logging

— Transaction.
— Intent.

Transaction Log

 Keep an ordered local log of all data blocks
that would have been sent to the replica.

e Can thus replay log in order, so replica is
out of date but never corrupt.

e Since data contents are logged, log space
requirements are large.

* Log grows without bound and could
overflow available space for long
transmission line interruptions.

Intent Logging

* I[nstead of logging actual data, just keep a
record of where the data has changed
between primary and replica.

 On replay, just send changed blocks.

* Ordering not stored in log, thus replica is
corrupt while log replay is in progress.

 Log can be a bitmap covering volume and is
a known non-increasing size.

Conclusions

 Well designed applications recover
themselves.

« HA software must look after resources and
monitoring.

« HA software must plan for and cope with all
pathological failures.

 Replication can be used for HA or DR but
using different characteristics.

